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Introduction

Introduction

In this module, we explore the algebra of least squares linear regression systems with a
special eye toward developing the properties useful for deriving factor analysis and
structural equation modeling.
A key insight is that important properties hold whether or not variables are observed.
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Bivariate Linear Regression

Bivariate Linear Regression

In bivariate linear regression performed on a sample of n observations, we seek to examine
the extent of the linear relationship between two observed variables, X and Y .
One variable (usually the one labeled Y ) is the dependent or criterion variable, the other
(usually labeled X ) is the independent or predictor variable.
Each data point represents a pair of scores, xi , yi that may be plotted as a point in the
plane. Such a plot, called a scatterplot, is shown on the next slide.
In these data, gathered on a group of male college students, the independent variable
plotted on the horizontal (X ) axis is shoe size, and the dependent variable plotted on the
vertical (Y ) axis is height in inches.
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Bivariate Linear Regression

Bivariate Linear Regression
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Bivariate Linear Regression

Bivariate Linear Regression

It would be a rare event, indeed, if all the points fell on a straight line. However, if Y and
X have an approximate linear relationship, then a straight line, properly placed, should
fall close to many of the points.
Choosing a straight line involves choosing the slope and intercept, since these two
parameters define any straight line.
The regression model in the sample is that

yi = β̂0 + β̂1xi + ei (1)

Generally, the least squares criterion, minimizing
∑n

i=1 e
2
i under choice of β̂0 and β̂1, is

employed.
Minimizing

∑n
i=1 e

2
i is accomplished with the following well-known least squares solution.

β̂1 =
rY ,XSY
SX

=
sY ,X
s2X

= s−1X ,X sx ,y (2)

β̂0 = Y • − β1X • (3)
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Bivariate Linear Regression

Bivariate Linear Regression
Deviation Score Formulas

Suppose we were to convert X into deviation score form. This would have no effect on
any variance, covariance or correlation involving X , but would change the mean of X to
zero.
What would be the effect on the least squares regression?
Defining x∗i = xi − X •, we have the new least squares setup

yi = β̂∗0 + β̂∗1x
∗
i + e∗i (4)

From the previous slide, we know that β̂∗1 = SY ,X∗/SX∗,X∗ = SY ,X/SX ,X = β̂1, and that

β̂∗0 = Y • − β̂∗1X
∗
• = Y •.

Thus, if X is shifted to deviation score form, the slope of the regression line remains
unchanged, but the intercept shifts to Y •.
It is easy to see that, should we also re-express the Y variable in deviation score form, the
regression line intercept will shift to zero and the slope will still remain unchanged.
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Bivariate Linear Regression

Bivariate Linear Regression
Variance of Predicted Scores

Using linear transformation rules, one may derive expressions for the variance of the
predicted (ŷi ) scores, the residual (ei ) scores, and the covariance between them.
For example consider the variance of the predicted scores. Remember that adding a
constant (in this case β̂0) has no effect on a variance, and multiplying by a constant
multiplies the variance by the square of the multiplier. So, since ŷi = β̂1xi + β̂0, it follows
immediately that

s2
Ŷ

= β̂21S
2
X

= (rY ,XSY /SX )2S2
X

= r2Y ,XS
2
Y (5)
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Bivariate Linear Regression

Bivariate Linear Regression
Covariance of Predicted and Criterion Scores

The covariance between the criterion scores (yi ) and predicted scores (ŷi ) is obtained by
the heuristic rule.
Begin by re-expressing ŷi as β1xi + β0, then recall that additive constant β0 cannot affect
a covariance.
So the covariance between yi and ŷi is the same as the covariance between yi and β̂1xi .
Using the heuristic approach, we find that SY ,Ŷ = SY ,β̂1X = β̂1SY ,X Recalling that

SY ,X = rY ,XSY SX , and β̂1 = rY ,XSY /SX , one quickly arrives at

SY ,Ŷ = β̂1SY ,X

= (rY ,XSY SX )(rY ,XSY /SX )

= r2Y ,XS
2
Y

= S2
Ŷ

(6)
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Bivariate Linear Regression

Bivariate Linear Regression
Covariance of Predicted and Residual Scores

Calculation of the covariance between the predicted scores and residual scores proceeds in
much the same way. Re-express ei as yi − ŷi , then use the heuristic rule. One obtains

SŶ ,E = SŶ ,Y−Ŷ

= SŶ ,Y − S2
Ŷ

= S2
Ŷ
− S2

Ŷ
(from Equation 6)

= 0 (7)

James H. Steiger (Vanderbilt University) The Algebra of Linear Regression 10 / 30



Bivariate Linear Regression

Bivariate Linear Regression
Covariance of Predicted and Residual Scores

Calculation of the covariance between the predicted scores and residual scores proceeds in
much the same way.
Re-express ei as yi − Ŷi , then use the heuristic rule. One obtains

SŶ ,E = SŶ ,y−Ŷ

= SŶ ,y − S2
Ŷ

= S2
Ŷ
− S2

Ŷ
(from Equation 6)

= 0 (8)

Predicted and error scores always have exactly zero covariance, and zero correlation, in
linear regression.
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Bivariate Linear Regression

Bivariate Linear Regression
Additivity of Variances

Linear regression partitions the variance of Y into non-overlapping portions.
Using a similar approach to the previous proofs, we may show easily that

S2
Y = S2

Ŷ
+ S2

E (9)
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Multiple Linear Regression

Multiple Linear Regression

Multiple linear regression with a single criterion variable and several predictors is a
straightforward generalization of bivariatelinear regression.
To make the notation simpler, assume that the criterion variable Y and the p predictor
variables Xj , j = 1, . . . , p are in deviation score form.
Let y be an n × 1 vector of criterion scores, and X be the n × p matrix with the predictor
variables in columns. Then the multiple regression prediction equation in the sample is

y = ŷ + e

= Xβ̂ + e (10)
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Multiple Linear Regression

Multiple Linear Regression

The least squares criterion remains essentially as before, i.e., minimize
∑

e2i = e′e under

choice of β̂. The unique solution is

β̂ =
(
X′X

)−1
X′y (11)

which may also be written as
β̂ = S−1XXSXY (12)
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Multivariate Linear Regression

Multivariate Linear Regression

The notation for multiple linear regression with a single criterion generalizes immediately
to situations where more than one criterion is being predicted simultaneously.
Specifically, let n × q matrix Y contain q criterion variables, and let β̂ be a p × q matrix
of regression weights. The least squares criterion is satisfied when the sum of squared
errors across all variables (i.e. Tr(E′E)) is minimized.
The unique solution is the obvious generalization of Equation 11, i.e.,

B̂ =
(
X′X

)−1
X′Y (13)
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Multivariate Linear Regression

Multivariate Linear Regression

We will now prove some multivariate generalizations of the properties we developed earlier
for bivariate linear regression systems.
First, we prove that Ŷ = XB and E = Y − XB̂ are uncorrelated. To do this, we examine
the covariance matrix between them, and prove that it is a null matrix. Recall from the
definition of the sample covariance matrix that, when scores in Y and X are in deviation
score form, that SYX = 1/(n − 1)Y′X. Hence, (moving the n − 1 to the left of the
formula for simplicity),
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Multivariate Linear Regression

Multivariate Linear Regression

(n − 1)SYE = Ŷ
′
E

=
(
XB̂
)′ (

Y − XB̂
)

= B̂
′
X′
(
Y − XB̂

)
= B̂

′
X′Y − B̂

′
X′XB̂

= Y′X
(
X′X

)−1
X′Y − Y′X

(
X′X

)−1
X′X

(
X′X

)−1
X′Y

= Y′X
(
X′X

)−1
X′Y − Y′X

(
X′X

)−1
X′Y

= 0 (14)
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Multivariate Linear Regression

Multivariate Linear Regression

The preceding result makes it easy to show that the variance-covariance matrix of Y is
the sum of the variance-covariance matrices for Ŷ and E. Specifically,

(n − 1)SYY = Y′Y

=
(
Ŷ + E

)′ (
Ŷ + E

)
=

(
Ŷ
′

+ E′
)(

Ŷ + E
)

= Ŷ
′
Ŷ + E′Ŷ + Ŷ

′
E + E′E

= Ŷ
′
Ŷ + 0 + 0 + E′E

= Ŷ
′
Ŷ + E′E
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Multivariate Linear Regression

Multivariate Linear Regression

Consequently
SYY = SŶŶ + SEE (15)

Notice also that
SEE = SYY − B′SXXB (16)
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

In the previous section, we developed results for sample bivariate regression, multiple
regression and multivariate regression.
We saw that, in the sample, a least squares linear regression system is characterized by
several key propertiesSimilar relationships hold when systems of random variables are
related in a linear least-squares regression system.
In this section, we extend these results to least-squares linear regression systems relating
random variables or random vectors.
We will develop the results for the multivariate regression case, as these results include
the bivariate and multiple regression systems as special cases.
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

Suppose there are p criterion variables in the random vector y , and q predictor variables
in the random vector x. For simplicity, assume all variables have means of zero, so no
intercept is necessary. The prediction equation is

y = B′x + e (17)

= ŷ + e (18)

In the population, the least-squares solution also minimizes the average squared error, but
in the long run sense of minimizing the expected value of the sum of squared errors, i.e.,
Tr E (ee′).
The solution for B is

B = Σ−1xx Σxy (19)

with Σxx = E (xx′) the variance-covariance matrix of the random variables in x, and
Σxy = E (xy′) the covariance matrix between the random vectors x and y.
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

The covariance matrix between predicted and error variables is null, just as in the sample
case. The proof is structurally similar to its sample counterpart, but we include it here to
demonstrate several frequently used techniques in the matrix algebra of expected values.

Σŷe = E
(
ŷe′
)

= E
(
B′x(y − B′x)′

)
= E

(
ΣyxΣ

−1
xx xy

′ − ΣyxΣ
−1
xx xx

′Σ−1xx Σyx

)
= ΣyxΣ

−1
xx E (xy′) − ΣyxΣ

−1
xx E (xx′)Σ−1xx Σyx

= ΣyxΣ
−1
xx Σxy − ΣyxΣ

−1
xx ΣxxΣ

−1
xx Σyx

= ΣyxΣ
−1
xx Σxy − ΣyxΣ

−1
xx Σyx

= 0 (20)
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

We also find that
Σyy = Σŷŷ + Σee (21)

and
Σee = Σyy − B′ΣxxB (22)

Consider an individual random variable yi in y. The correlation between yi and its
respective ŷi is called “the multiple correlation of yi with the predictor variables in x.”
Suppose that the variables in x were uncorrelated, and that they and the variables in y
have unit variances, so that Σxx = I, an identity matrix, and, as a consequence, B = Σxy.
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

Then the correlation between a particular yi and its respective ŷi is

ryi ,ŷi =
σyi ŷi√
σ2yiσ

2
ŷi

=
E
(
yi (b

′
ix)′
)√

(1)(b′iΣxxbi )

=
E (yix

′bi )√
(b′iΣxxbi )

=
E (yix

′)bi√
(b′iΣxxbi )

=
σyixbi√
(b′ibi )

=
b′ibi√
(b′ibi )

(23)
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

It follows immediately that, when the predictor variables in x are orthogonal with unit
variance, squared multiple correlations may be obtained directly as a sum of squared,
standardized regression weights.
In subsequent chapters, we will be concerned with two linear regression prediction systems
known (loosely) as “factor analysis models,” but referred to more precisely as “common
factor analysis” and “principal component analysis.”
In each system, we will be attempting to reproduce an observed (or “manifest”) set of p
random variables in as (least squares) linear functions of a smaller set of m hypothetical
(or “latent”) random variables.
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Partial Correlation

Partial Correlation

In many situations, the correlation between two variables may be substantially different
from zero without implying any causal connection between them.
A classic example is the high positive correlation between number of fire engines sent to a
fire and the damage done by the fire.
Clearly, sending fire engines to a fire does not usually cause damage, and it is equally
clear that one would be ill-advised to recommend reducing the number of trucks sent to a
fire as a means of reducing damage.
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Partial Correlation

Partial Correlation

In situations like the house fire example, one looks for (indeed often hypothesizes on
theoretical grounds) a “third variable” which is causally connected with the first two
variables, and “explains” the correlation between them.
In the house fire example, such a third variable might be “size of fire.”
One would expect that, if size of fire were held constant, there would be, if anything, a
negative correlation between damage done by a fire and the number of fire engines sent
to the fire.
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Partial Correlation

Partial Correlation

One way of statistically holding the third variable “constant” is through partial correlation
analysis.
In this analysis, we “partial out” the third variable from the first two by linear regression,
leaving two linear regression error, or residual variables. We then compute the “partial
correlation” between the first two variables as the correlation between the two regression
residuals.
A basic notion connected with partial correlation analysis is that, if, by partialling out one
or more variables, you cause the partial correlations among some (other) variables to go
to zero, then you have “explained” the correlations among the (latter) variables as being
“due to” the variables which were partialled out.
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Partial Correlation

Partial Correlation

If, in terms of Equation 18 above, we “explain” the correlations in the variables in y by
the variables in x, then e should have a correlation (and covariance) matrix which is
diagonal, i.e., the variables in e should be uncorrelated once we “partial out” the variables
in x by linear regression.
Recalling Equation ?? we see that this implies that Σyy − B′ΣxxB is a diagonal matrix.
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Partial Correlation

Partial Correlation

This seemingly simple result has some rather surprisingly powerful ramifications, once one
drops certain restrictive mental sets.
In subsequent lectures, we shall see how, at the turn of the 20th century, this result led
Charles Spearman to a revolutionary linear regression model for human intelligence, and
an important new statistical technique for testing the model with data. What was
surprising about the model was that it could be tested, even though the predictor
variables (in x) are never directly observed!
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